A Subgraph Operator for Graph Transformation Languages
نویسندگان
چکیده
In practical applications of graph transformation techniques to model transformations one often has the need for copying, deleting, or moving entire subgraphs that match a certain graph pattern. While this can be done using elementary node and edge operations, the transformation is rather cumbersome to write. To simplify the transformation, we have recently developed a novel approach that allows selecting subgraphs from the matched portion of the host graph, applying a filter condition to the selection, and performing a delete, move, or copy operation on the filtered result in the context of a transformation rule. The approach has been implemented in the GReAT language and tested on examples that show the practical efficacy of the technique. The paper describes the technique in detail and illustrates its use on a real-life example.
منابع مشابه
The principal ideal subgraph of the annihilating-ideal graph of commutative rings
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
متن کاملGraphs-at-a-time: Query Language and Access Methods for Graph Databases
With the prevalence of graph data in a variety of domains, there is an increasing need for a language to query and manipulate graphs with heterogeneous attributes and structures. We propose a query language for graph databases that supports arbitrary attributes on nodes, edges, and graphs. In this language, graphs are the basic unit of information and each query manipulates one or more collecti...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملMultibody graph transformations and analysis: Part I: Tree topology systems.
This two-part paper uses graph transformation methods to develop methods for partitioning, aggregating, and constraint embedding for multibody systems. This first part focuses on tree-topology systems and reviews the key notion of spatial kernel operator (SKO) models for such systems. It develops systematic and rigorous techniques for partitioning SKO models in terms of the SKO models of the co...
متن کاملChapter 4 QUERY LANGUAGE AND ACCESS METHODS FOR GRAPH DATABASES
With the prevalence of graph data in a variety of domains, there is an increasing need for a language to query and manipulate graphs with heterogeneous attributes and structures. We present a graph query language (GraphQL) that supports bulk operations on graphs with arbitrary structures and annotated attributes. In this language, graphs are the basic unit of information and each query manipula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ECEASST
دوره 6 شماره
صفحات -
تاریخ انتشار 2007